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Abstract. Few-shot learning offers a promising approach for disease classifica-
tion in settings where labeled data are scarce. While widely explored in cancer re-
search, its application to non-cancer diseases and multi-omics data remains limited.
In this study, we propose a MAML-based few-shot learning model, pre-trained on
TCGA data from four distinct tissue types. We then evaluate its adaptability across
three disease categories, including COVID-19, Cirrhosis, and HBV-HCC. Our re-
sults demonstrate that MAML consistently outperforms a baseline MLP, achiev-
ing higher PR-AUC and ROC-AUC for COVID-19 and Cirrhosis. However, for
HBV-HCC, where disease characteristics closely align with the pre-training data,
the baseline MLP exhibits slightly superior performance. These findings highlight
MAML’s potential for low-data disease classification, while also underscoring con-
ditions where its benefits may be limited.

Keywords. Few-shot learning, MAML, Meta-learning, Disease Classification,
Multi-omics

1. Introduction

Disease classification is a cornerstone of medical research and clinical diagnostics, yet
it often encounters the challenge of limited labeled data. Traditional deep learning ap-
proaches require extensive, high-quality annotations for robust performance, but these
are often unavailable in medical settings due to cost, privacy issues, and the difficulty
of obtaining diverse patient samples. Consequently, there is a growing need for learning
frameworks that can perform effectively with very few training examples.

Recent advances in few-shot learning offer a promising solution by enabling models
to generalize from minimal supervision. While few-shot learning has been widely ex-
plored in cancer research [1,2,3], its application to non-cancer diseases remains underex-
plored. Additionally, most prior studies focus on image-based medical tasks [3], whereas
applications in multi-omics and gene expression-based classification, which are crucial
for precision medicine, have received far less attention. Beyond cancer, few-shot learn-
ing has been successfully applied to other biomedical problems, such as protein structure
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prediction and drug discovery [4,5], demonstrating its potential across a variety of med-
ical domains. However, many existing few-shot learning approaches in biomedical ap-
plications have been designed with task-specific optimizations, which present challenges
when generalizing to diverse disease datasets.

Among few-shot learning techniques, Model-Agnostic Meta-Learning (MAML) has
gained prominence due to its ability to learn a generalizable initialization that enables
rapid adaptation to new tasks with only a few gradient updates [6]. While conventional
supervised learning optimizes a model for a specific task, MAML is meta-trained across
multiple tasks. As a result, it learns an initialization that can be quickly fine-tuned to
new diseases with minimal labeled data. This makes MAML particularly well-suited for
biomedical applications, where the continual emergence of new diseases sustains the
demand for flexible and rapidly adaptable classification methods, even when labeled data
are scarce.

To bridge the gap in few-shot learning research for multi-omics classification be-
yond cancer, we propose a MAML-based few-shot learning approach that extends its
applicability to a broader range of diseases. Our study leverages The Cancer Genome
Atlas (TCGA) datasets for meta-training and evaluates the model’s adaptability in few-
shot settings across both cancerous and non-cancerous diseases. Unlike previous appli-
cations of few-shot learning in medical AI, which have primarily focused on image-
based tasks or single-disease classification, our approach applies MAML to multi-omics
data, allowing it to generalize across a broad spectrum of diseases. Through these ex-
periments, we aim to validate our hypothesis that a MAML-based model outperforms a
conventional machine learning model in few-shot scenarios, particularly in non-cancer
diseases where labeled data are scarce. Our findings highlight the potential of MAML-
based meta-learning for biomedical classification and demonstrate its generalizability in
low-data disease classification tasks.

2. Method

In this study, we proposed a few-shot learning framework for disease prediction that in-
tegrated pre-training, meta-training, and meta-testing. To effectively leverage genomic
data, our approach consisted of four key stages: dataset collection from publicly available
repositories; systematic data preprocessing to ensure consistency, address class imbal-
ance, and reduce dimensionality via gene filtering; model design based on a MAML ar-
chitecture with weight initialization using a pre-trained Multi-Layer Perceptron (MLP);
and comprehensive performance evaluation. Figure 1 provides an overview of the exper-
imental design.

2.1. Dataset

We utilized two types of omics data, mRNA and miRNA, obtained from high-throughput
sequencing in both the meta-training and meta-testing phases. TCGA datasets used for
meta-training were sourced from Ron Shamir’s group [7]. We focused on cancers asso-
ciated with four tissue types: breast (Breast Invasive Carcinoma, BRCA), kidney (Kid-
ney Renal Clear Cell Carcinoma, KIRC), liver (Liver Hepatocellular Carcinoma, LIHC),
and lung (Lung Squamous Cell Carcinoma, LUSC). For the meta-testing phase, diseases
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Figure 1. Schematic overview of the experimental workflow, illustrating the process of dataset collection,
pre-training an MLP for weight initialization, and applying MAML for meta-training and meta-testing. The top
section shows the shared MLP architecture used for both pre-training and classification in MAML and baseline
models.

(i.e., prediction targets) were filtered based on their disease-disease associations with all
four TCGA datasets, computed using the Jaccard Index (JI) from the DisGeNet database
[8]. To ensure relevance and consistency, we prioritized diseases with the highest JI val-
ues and confirmed their association across all selected TCGA tissue types. We utilized
three target diseases for our experiment: Coronavirus disease (COVID-19), Cirrhosis,
and Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) [9,10,11]. The
National Center for Biotechnology Information (NCBI)-generated RNA-seq count data
for these samples were obtained from the Gene Expression Omnibus (GEO) repository.
Finally, we used biological pathways from the Reactome database to refine our gene se-
lection and reduce dimensionality [12]. Only genes associated with the “Disease” and
“Signal Transduction” pathways were retained to focus on biologically relevant features.
Table 1 summarizes both the TCGA and GEO datasets, including the number of healthy
controls (Label 0) and patients (Label 1), along with the total number of samples. Note
that for the TCGA datasets, we downsampled the positive class to achieve a 3:1 ratio of
positive to negative.

2.2. Preprocessing

All mRNA and miRNA gene symbols were unified according to the conventions of the
TCGA datasets provided by Ron Shamir’s group: mRNA genes adhered to standard
gene nomenclature, while miRNAs were labeled with the “hsa-” prefix. Additionally,
all mRNA and miRNA data used in both the meta-training and meta-testing phases un-
derwent log transformation followed by standardization to stabilize variance and en-
sure comparability across features. For the TCGA datasets prepared for meta-training, a
class imbalance was identified, with a positive-to-negative class ratio of approximately
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Table 1. Summary of Meta-Training (TCGA) and Meta-Testing (GEO) Datasets.
Note: The TCGA data were downsampled to a 3:1 (Label 1 : Label 0) ratio. Label 0 indicates healthy controls
and Label 1 indicates patient samples.

Data Source Cancer/Disease Type Label 0 (Healthy) Label 1 (Patient) Total Samples

TCGA

BRCA 87 261 348
KIRC 71 213 284
LIHC 50 150 200
LUSC 38 114 152

GEO
COVID-19 4 6 10
Cirrhosis 24 150 174
HBV-HCC 21 21 42

10:1. To address this, the positive class was downsampled, resulting in a final ratio of
around 3:1. Lastly, gene filtering was performed by intersecting the gene sets from the
TCGA and Reactome databases. The filtered genes were further intersected with NCBI-
generated GEO data to ensure consistency, resulting in a final set of 2,543 genes. The
expression levels of these transcripts were subsequently used as input features for our
MAML-based few-shot learning framework, which is elaborated upon in the following
section on Model Design.

2.3. Model Design

We employed a MAML-based few-shot learning framework with weight initialization
derived from pre-training. The architecture for both the MLP used in pre-training and the
MAML model consisted of an input layer with 2,543 features, two hidden layers of 635
and 158 neurons using Leaky ReLU activations, and an output layer for binary classifi-
cation. To provide a meaningful initialization for MAML, the MLP was pre-trained on
the TCGA breast cancer dataset, which had the largest sample size among the four tissue
datasets [13]. The weights obtained from this pre-training phase were used to initialize
the parameters for meta-training in the MAML framework.

During meta-training, the MAML model was trained on TCGA datasets from three
tissue types: kidney, liver, and lung. A 2-way k-shot learning setup was adopted, with
k = 1,3,5. To enable shallow generalization, a single gradient update was performed
per task using an inner loop learning rate (α) of 0.001. After task-specific adaptation,
we employed AdamW [14], an Adam optimizer variant that decouples weight decay (L2
regularization) from the adaptive gradient updates, to perform the meta-update step using
an outer loop learning rate (β ) of 0.001. AdamW was chosen to stabilize optimization
by preventing excessively large weight updates, thereby improving generalization across
tasks. Given the small meta-batch size (n = 3), there was an increased risk of overfitting
to a specific tissue. To mitigate this, we implemented an early stopping criterion to halt
training when the average loss across meta-batches no longer decreased. Specifically,
training was terminated if the meta-loss did not improve for 100 consecutive outer-loop
iterations (patience = 100). Furthermore, Layer Normalization was introduced instead
of Batch Normalization to ensure stable training under these small-batch conditions [15,
16]. For meta-testing, the inner loop learning rate (α) was increased to 0.01 to facilitate
faster task-specific adaptation, and each task underwent 10 gradient updates to enable
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deeper task-specific learning and enhance predictive performance. The model was then
evaluated on three distinct target diseases described in the Dataset section. A formal
description of the model’s training and adaptation process is outlined in Algorithm 1.

Algorithm 1 MAML for Few-Shot Multi-Omics Disease Classification
Require: Dpre: Pre-training dataset (BRCA)
Require: p(Ttrain): Meta-training task distribution (KIRC, LIHC, LUSC)
Require: Dtest: Meta-testing datasets (COVID-19, Cirrhosis, HBV-HCC)
Require: αtrain, αtest: Inner-loop learning rates for meta-training and meta-testing
Require: β : Meta-update (outer-loop) learning rate
Require: k: Number of support samples per task
Require: ntest: Number of inner-loop updates during meta-testing

1: Pre-training:
2: Train an MLP on Dpre to obtain initial parameters θ0
3: Initialize θ ← θ0
4: Meta-Training:
5: while not converged do
6: Sample a batch of tasks {Ti} ∼ p(Ttrain)
7: for each task Ti in the batch do
8: Sample k per class for support set Di from Ti
9: Compute gradient: gi = ∇θLTi(θ ;Di)

10: Update task-specific parameters: θ ′i ← θ −αtrain ·gi
11: Sample query set D′i from Ti
12: end for
13: Meta-update: θ ← θ −β ∑i ∇θ ′i

LTi(θ
′
i ;D′i)

14: if early stopping criterion satisfied then
15: break
16: end if
17: end while
18: Meta-Testing:
19: for each new task T̃ in Dtest do
20: Split T̃ into support set ST̃ and query set QT̃
21: Initialize task parameters: θT̃ ← θ

22: for j = 1 to ntest do
23: Compute gradient: gT̃ = ∇θLT̃ (θT̃ ;ST̃ )
24: Update parameters: θT̃ ← θT̃ −αtest ·gT̃
25: end for
26: Evaluate performance of θT̃ on QT̃
27: end for

2.4. Evaluation Metric

The performance of disease prediction was evaluated using the Precision-Recall Area
Under the Curve (PR-AUC) and Receiver Operating Characteristic Area Under the Curve
(ROC-AUC). Given that the positive class holds greater importance in the context of
disease prediction, PR-AUC was used as the primary metric due to its focus on precision
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and recall. ROC-AUC was additionally reported to provide a comprehensive evaluation
across both classes. Both metrics are threshold independent, making them well-suited for
direct model comparisons with baseline models and robust performance evaluation [17].

3. Result and Discussion

Table 2 presents the performance comparison between the baseline MLP and our pro-
posed MAML-based approach under three k-shot settings for each target disease. All
results are reported as the mean and standard deviation computed over 50 meta-testing
tasks. Overall, the proposed model shows consistently higher performance for COVID-
19 and Cirrhosis across PR-AUC and ROC-AUC. For COVID-19, MAML exceeds the
baseline by an average of 0.09 in PR-AUC and 0.13 in ROC-AUC, while in Cirrhosis,
it achieves an average improvement of 0.09 in PR-AUC and 0.11 in ROC-AUC. In con-
trast, for HBV-HCC, both models exhibit exceptionally high performance, with the base-
line MLP showing slightly better results by approximately 0.02 in PR-AUC and 0.03 in
ROC-AUC.

Table 2. Performance Comparison Between Baseline (MLP) and Proposed (MAML) Models.
Note: While the proposed MAML model uses a 2-way k-shot setting, the baseline MLP model is trained on
2× k samples for each task, as it does not follow the n-way k-shot paradigm.

Target Disease Metric k-shot Baseline (MLP) Proposed (MAML)

COVID-19

PR-AUC 1 0.69 (±0.12) 0.75 (±0.08)
3 0.66 (±0.18) 0.77 (±0.15)
5 N/A N/A

ROC-AUC 1 0.48 (±0.13) 0.56 (±0.08)
3 0.24 (±0.30) 0.42 (±0.29)
5 N/A N/A

Cirrhosis

PR-AUC 1 0.61 (±0.13) 0.61 (±0.09)
3 0.63 (±0.14) 0.80 (±0.14)
5 0.68 (±0.15) 0.79 (±0.13)

ROC-AUC 1 0.57 (±0.18) 0.61 (±0.11)
3 0.61 (±0.17) 0.78 (±0.13)
5 0.66 (±0.17) 0.78 (±0.12)

HBV-HCC

PR-AUC 1 0.996 (±0.01) 0.977 (±0.02)
3 1.000 (±0.00) 0.983 (±0.01)
5 1.000 (±0.00) 0.982 (±0.01)

ROC-AUC 1 0.996 (±0.01) 0.955 (±0.03)
3 1.000 (±0.00) 0.970 (±0.03)
5 1.000 (±0.00) 0.970 (±0.02)

The MAML-based model’s consistent advantage in COVID-19 and Cirrhosis clas-
sification can be primarily attributed to its meta-learning capability. By leveraging pre-
trained weights and undergoing meta-training, the model learns a parameter initialization
that facilitates rapid adaptation to new tasks, even within very limited training samples.
This rapid adaptability is particularly beneficial in medical applications where collect-
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ing extensive annotated data can be challenging. In HBV-HCC task, the baseline MLP
slightly outperforms the MAML-based model. One plausible explanation is the close
alignment between the TCGA cancer data and HBV-HCC. Since the MLP was trained
in a single supervised pass on all four TCGA datasets, it acquired broad cancer-specific
features closely matching the HBV-HCC profile. In this setting, MAML’s meta-learning
initialization, designed to enable rapid adaptation for novel or diverse tasks, offers less
additional benefit as the baseline is already near-ceiling in terms of cancer-relevant rep-
resentations.

Initially, we hypothesized that a MAML-based approach would outperform a con-
ventional baseline MLP under few-shot conditions. The results largely validate this hy-
pothesis for COVID-19 and Cirrhosis, where the MAML shows superior classification
metrics despite very limited data. This aligns with meta-learning principles, which em-
phasize the advantage of a meta-trained initialization in low-data scenarios. However,
for HBV-HCC, which closely aligns with the TCGA dataset, the additional benefits that
MAML typically provides are less pronounced. This indicates that while MAML is effec-
tive for diverse tasks and data scarcity, its advantage may diminish when a well-trained
baseline already reaches near-ceiling performance.

4. Conclusion

This study demonstrated the effectiveness of a MAML-based few-shot learning approach
for disease classification using multi-omics data. Initialized with TCGA datasets, our
proposed model achieved superior performance in COVID-19 and Cirrhosis classifica-
tion compared to the baseline MLP, particularly in low-data settings. This result high-
lights MAML’s ability to generalize across diverse disease tasks with limited labeled
data. However, in HBV-HCC classification, where the disease characteristics closely re-
sembled the training data, the baseline MLP performed slightly better. This observation
suggests that MAML’s advantage is most prominent when the target disease differs sig-
nificantly from the meta-training data and diminishes when domain similarity is high.
Overall, these findings emphasize the importance of both dataset quality and domain
alignment in determining few-shot learning performance.

Despite the promising results on three target diseases, its generalizability may be
constrained by the relatively limited scope of diseases evaluated. Future work will ad-
dress this limitation by expanding the range of target diseases to include tissues such as
the lungs and breasts, which were previously part of the TCGA pre-training data but have
not yet been explored as target tasks. This will provide a more comprehensive assessment
of the method’s robustness and scalability. Moreover, we plan to integrate a pathway
layer into the model architecture to explicitly capture gene-pathway associations, thereby
enhancing both interpretability and predictive performance. Finally, we will employ ex-
plainable AI (xAI) analyses to ensure that our approach not only achieves high accuracy
but also yields insights that are meaningful for clinical or translational research contexts.
Altogether, these directions will further broaden the applicability of our approach and
underscore its potential as a robust few-shot disease classification paradigm.
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